Classification Trees Based on Belief Functions

نویسندگان

  • Nicolas Sutton-Charani
  • Sébastien Destercke
  • Thierry Denoeux
چکیده

Decision trees classifiers are popular classification methods. In this paper, we extend to multi-class problems a decision tree method based on belief functions previously described for 2-class problems only. We propose two ways to achieve this extension: combining multiple 2-class trees together and directly extending the estimation of belief functions within the tree to the multi-class setting. We provide experiment results and compare them to classical decision trees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling uncertain labels in multiclass problems using belief decision trees

This paper investigates the induction of decision trees based on the theory of belief functions. This framework allows to handle training examples whose labeling is uncertain or imprecise. A former proposal to build decision trees for twoclass problems is extended to multiple classes. The method consists in combining trees obtained from various two-class coarsenings of the initial frame.

متن کامل

Decision trees using the belief function theory

This paper presents an algorithm for building decision trees in an uncertain environment. Our algorithm will use the theory of belief functions in order to represent the uncertainty about the parameters of the classification problem. Our method will be concerned with both the decision tree building task and the classification task.

متن کامل

Evidential Logistic Regression for Binary SVM Classifier Calibration

The theory of belief functions has been successfully used in many classification tasks. It is especially useful when combining multiple classifiers and when dealing with high uncertainty. Many classification approaches such as k-nearest neighbors, neural network or decision trees have been formulated with belief functions. In this paper, we propose an evidential calibration method that transfor...

متن کامل

Application of classification trees-J48 to model the presence of roach (Rutilus rutilus) in rivers

In the present study, classification trees (CTs-J48 algorithm) were used to study the occurrence of roach in rivers in Flanders (Belgium). The presence/absence of roach was modelled based on a set of river characteristics. The predictive performance of the CTs models was assessed based on the percentage of Correctly Classified Instances (CCI) and Cohen's kappa statistics. To find the best model...

متن کامل

Belief decision trees: theoretical foundations

This paper extends the decision tree technique to an uncertain environment where the uncertainty is represented by belief functions as interpreted in the Transferable Belief Model (TBM). This so-called belief decision tree is a new classification method adapted to uncertain data. We will be concerned with the construction of the belief decision tree from a training set where the knowledge about...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012